Need for multi-scale systems to identify spindle orientation regulators relevant to tissue disorganization in solid cancers
نویسندگان
چکیده
INTRODUCTION During cell division, the mitotic spindle captures chromosomes and segregates them into two equal sets. The orientation and position of the mitotic spindle is important because the spindle equator becomes the plane of cell division. For instance, in a columnar cell with apical and basal polarity, if the spindle pole-to-pole axis orients along the cell’s long axis, the cell will divide along its short-axis; however, if the spindle axis orients along the cell’s short axis, the cell will divide along its long-axis (Figure 1A). Similarly when the spindle is off-centered (mis-positioned), it results in asymmetric cell sizes in the two daughter cells, which is often used to control tissue organization (Figure 1B). Thus, errors in the orientation and positioning of the mitotic spindle can cause incorrect plane of cell division leading to incorrect cell size, content and neighborhood of daughter cells (Figures 1A,B). A human body experiences over a trillion divisions and through age errors in cell division can accumulate; errors in spindle orientation can contribute to tissue disorganization, a hallmark of several age-related conditions and also, carcinogenesis. However, mutations in classical cortical force generators that rotate the spindle to the correct orientation have not been shown to promote carcinogenesis. In contrast, several proteins known to play a role in cancer initiation and progression are being newly identified as regulators of spindle positioning and orientation. In this opinion article, we briefly discuss the surprising lack of direct evidence for classical spindle rotation regulators in oncogenesis and present examples of oncogenic pathway components that influence spindle orientation.We conclude with the need for new strategies to uncover the contribution of spindle orientation defects to tissue disorganization commonly found in cancers and also ageing disorders.
منابع مشابه
Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملMitotic spindle misorientation in cancer--out of alignment and into the fire.
Mitotic spindle orientation can influence tissue organization and vice versa. Cells orient their spindles by rotating them parallel or perpendicular to the cell--and hence the tissue--axis. Spindle orientation in turn controls the placement of daughter cells within a tissue, influencing tissue morphology. Recent findings implicating tumor suppressor proteins in spindle orientation bring to the ...
متن کاملMolecular pathways regulating mitotic spindle orientation in animal cells.
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expand...
متن کاملEffects of liquid, temporary immersion bioreactor and solid culture systems on micropropagation of Lilium ledebourii via bulblet microscales— An endangered valuable plant with ornamental potential
Lilium ledebourii (Baker) Boiss. (Liliaceae) is a critically endangered lily species native tonorthern Iran, where it is protected by law. In order to develop a cost effective method for largescalepropagation, the effects of three culture systems (solid, liquid and temporary immersion)and two types of cytokinins [6-Benzyladenine (BA) and Thidiazuron (TDZ)] were studied onthe in vitro plant rege...
متن کاملDiagnostic Utility of miRNAs in Cancer
Cancer is the one of most prevalent and leading causes of death in the world. Current ad­vancements in technology improve the understanding of the pathogenesis and pathology of cancers. But, due to enlarging mortality rates, poor prognosis, and lacunae in clinical early predictive biomarkers provide an important momentum to investigate novel early diagnos­tic/prognostic markers and spec...
متن کامل